108 research outputs found

    Crackling Noise, Power Spectra and Disorder Induced Critical Scaling

    Full text link
    Crackling noise is observed in many disordered non-equilibrium systems in response to slowly changing external conditions. Examples range from Barkhausen noise in magnets to acoustic emission in martensites to earthquakes. Using the non-equilibrium random field Ising model, we derive universal scaling predictions for the dependence of the associated power spectra on the disorder and field sweep rate, near an underlying disorder-induced non-equilibrium critical point. Our theory applies to certain systems in which the crackling noise results from avalanche-like response to a (slowly) increasing external driving force, and is characterized by a broad power law scaling regime of the power spectra. We compute the critical exponents and discuss the relevance of the results to experiments.Comment: 27 Latex Pages, 14 eps figure

    Self-organized criticality in the hysteresis of the Sherrington - Kirkpatrick model

    Full text link
    We study hysteretic phenomena in random ferromagnets. We argue that the angle dependent magnetostatic (dipolar) terms introduce frustration and long range interactions in these systems. This makes it plausible that the Sherrington - Kirkpatrick model may be able to capture some of the relevant physics of these systems. We use scaling arguments, replica calculations and large scale numerical simulations to characterize the hysteresis of the zero temperature SK model. By constructing the distribution functions of the avalanche sizes, magnetization jumps and local fields, we conclude that the system exhibits self-organized criticality everywhere on the hysteresis loop.Comment: 4 pages, 4 eps figure

    Rayleigh loops in the random-field Ising model on the Bethe lattice

    Get PDF
    We analyze the demagnetization properties of the random-field Ising model on the Bethe lattice focusing on the beahvior near the disorder induced phase transition. We derive an exact recursion relation for the magnetization and integrate it numerically. Our analysis shows that demagnetization is possible only in the continous high disorder phase, where at low field the loops are described by the Rayleigh law. In the low disorder phase, the saturation loop displays a discontinuity which is reflected by a non vanishing magnetization m_\infty after a series of nested loops. In this case, at low fields the loops are not symmetric and the Rayleigh law does not hold.Comment: 8pages, 6 figure

    Local mean-field study of capillary condensation in silica aerogels

    Full text link
    We apply local mean-field (i.e. density functional) theory to a lattice model of a fluid in contact with a dilute, disordered gel network. The gel structure is described by a diffusion-limited cluster aggregation model. We focus on the influence of porosity on both the hysteretic and the equilibrium behavior of the fluid as one varies the chemical potential at low temperature. We show that the shape of the hysteresis loop changes from smooth to rectangular as the porosity increases and that this change is associated to disorder-induced out-of-equilibrium phase transitions that differ on adsorption and on desorption. Our results provide insight in the behavior of 4^4He in silica aerogels.Comment: 19 figure

    Critical Hysteresis from Random Anisotropy

    Get PDF
    Critical hysteresis in ferromagnets is investigated through a NN-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N)\mathcal{O}(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.Comment: four pages, revtex4; minor corrections in the text and typos corrected (published version

    Low field hysteresis in disordered ferromagnets

    Get PDF
    We analyze low field hysteresis close to the demagnetized state in disordered ferromagnets using the zero temperature random-field Ising model. We solve the demagnetization process exactly in one dimension and derive the Rayleigh law of hysteresis. The initial susceptibility a and the hysteretic coefficient b display a peak as a function of the disorder width. This behavior is confirmed by numerical simulations d=2,3 showing that in limit of weak disorder demagnetization is not possible and the Rayleigh law is not defined. These results are in agreement with experimental observations on nanocrystalline magnetic materials.Comment: Extended version, 18 pages, 5 figures, to appear in Phys. Rev.

    Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect

    Get PDF
    We study the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium. The avalanche-like motion of the domain walls between pinned configurations produces a noise known as the Barkhausen effect. We discuss experimental results on soft ferromagnetic materials, with reference to the domain structure and the sample geometry, and report Barkhausen noise measurements on Fe21_{21}Co64_{64}B15_{15} amorphous alloy. We construct an equation of motion for a flexible domain wall, which displays a depinning transition as the field is increased. The long-range dipolar interactions are shown to set the upper critical dimension to dc=3d_c=3, which implies that mean-field exponents (with possible logarithmic correction) are expected to describe the Barkhausen effect. We introduce a mean-field infinite-range model and show that it is equivalent to a previously introduced single-degree-of-freedom model, known to reproduce several experimental results. We numerically simulate the equation in d=3d=3, confirming the theoretical predictions. We compute the avalanche distributions as a function of the field driving rate and the intensity of the demagnetizing field. The scaling exponents change linearly with the driving rate, while the cutoff of the distribution is determined by the demagnetizing field, in remarkable agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted to Phys. Rev.

    Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy

    Get PDF
    The global nephrology community recognises the need for a cohesive plan to address the problem of chronic kidney disease (CKD). In July, 2016, the International Society of Nephrology hosted a CKD summit of more than 85 people with diverse expertise and professional backgrounds from around the globe. The purpose was to identify and prioritise key activities for the next 5-10 years in the domains of clinical care, research, and advocacy and to create an action plan and performance framework based on ten themes: strengthen CKD surveillance; tackle major risk factors for CKD; reduce acute kidney injury-a special risk factor for CKD; enhance understanding of the genetic causes of CKD; establish better diagnostic methods in CKD; improve understanding of the natural course of CKD; assess and implement established treatment options in patients with CKD; improve management of symptoms and complications of CKD; develop novel therapeutic interventions to slow CKD progression and reduce CKD complications; and increase the quantity and quality of clinical trials in CKD. Each group produced a prioritised list of goals, activities, and a set of key deliverable objectives for each of the themes. The intended users of this action plan are clinicians, patients, scientists, industry partners, governments, and advocacy organisations. Implementation of this integrated comprehensive plan will benefit people who are at risk for or affected by CKD worldwide

    Crises and collective socio-economic phenomena: simple models and challenges

    Full text link
    Financial and economic history is strewn with bubbles and crashes, booms and busts, crises and upheavals of all sorts. Understanding the origin of these events is arguably one of the most important problems in economic theory. In this paper, we review recent efforts to include heterogeneities and interactions in models of decision. We argue that the Random Field Ising model (RFIM) indeed provides a unifying framework to account for many collective socio-economic phenomena that lead to sudden ruptures and crises. We discuss different models that can capture potentially destabilising self-referential feedback loops, induced either by herding, i.e. reference to peers, or trending, i.e. reference to the past, and account for some of the phenomenology missing in the standard models. We discuss some empirically testable predictions of these models, for example robust signatures of RFIM-like herding effects, or the logarithmic decay of spatial correlations of voting patterns. One of the most striking result, inspired by statistical physics methods, is that Adam Smith's invisible hand can badly fail at solving simple coordination problems. We also insist on the issue of time-scales, that can be extremely long in some cases, and prevent socially optimal equilibria to be reached. As a theoretical challenge, the study of so-called "detailed-balance" violating decision rules is needed to decide whether conclusions based on current models (that all assume detailed-balance) are indeed robust and generic.Comment: Review paper accepted for a special issue of J Stat Phys; several minor improvements along reviewers' comment

    Impact of dietary patterns, individual and workplace characteristics on blood pressure status among civil servants in Bida and Wushishi communities of Niger State, Nigeria

    Get PDF
    The global burden estimate of hypertension is alarming and results in several million deaths annually. A high incidence of sudden deaths from cardiovascular diseases in the civil workforce in Nigeria is often reported. However, the associations between Dietary Patterns (DPs), individual, and workplace characteristics of hypertension among this workforce have not been fully explored. This study aimed to identify DP in the Bida and Wushishi Communities of Niger State and establish its relationship with hypertension along with other individual and workplace characteristics. Factor analysis was used to establish DP, Chi-square test to identify their relationships with hypertension, and logistic regression to determine the predictor risk factors. The prevalence of hypertension was 43.7%; mean weight, height, and body fat were: 72.8±15 kg, 166±8.9 mm and 30.4%, respectively. Three DPs: “Efficient Diet,” “Local diet,” and “Energy Boost Diet” were identified. The factor loading scores for these factors were divided into quintiles Q1–Q5; none of them had a significant effect on hypertension status. Conversely, increase in age, the Ministry, Department, and Agency (MDA) of employment, frequency of eating in restaurants, and obesity were identified as significant risk factors. After adjusting for confounders (age, body mass index, MDA, and eating habits), a high score (Q5) in “efficient diet pattern” was significantly related to a lower likelihood of hypertension than a low score (Q1). The prevalence of hypertension among the participants was relatively very high. An increase in age and working in educational sector were risk factors associated with hypertension. Therefore, it is recommended that civil servants engage in frequent exercise and undergo regular medical checkups, especially as they get older. These findings highlight the need for large-scale assessment of the impact of variables considered in this study on hypertension, among the civil workforce across Niger state and Nigeria
    • …
    corecore